ASX Glossary - V: Difference between revisions

From AviationSafetyX Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 148: Line 148:
</head>
</head>
<body>
<body>
    <table>
<table>
<tr id="ASX">
<tr>
     <td class="term" style="text-align: center; font-size: 1em">
     <td class="term">
         <a href="https://wiki.alsresume.com/index.php?title=AviationSafetyX" target="_blank"  
         <a href="https://wiki.alsresume.com/index.php?title=V-speeds" target="_blank"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseout="this.style.color='#40E0D0';">
           onmouseout="this.style.color='#40E0D0';">V1 Speed</a>
            AviationSafetyX<br>and
</td>
        </a> <br>
<td class="description">V1 is the takeoff decision speed, where the pilot must either abort or commit to takeoff. If an engine fails before V1, stopping is still possible. Beyond V1, the aircraft must take off due to insufficient runway remaining to stop safely. This speed varies based on aircraft weight, runway length, and environmental conditions such as wind and temperature.</td>
        <span style="color: #00ffe3; font-size: 1em;">ASX Wikibase</span>
<td class="image-column"><img src="https://www.alsresume.com/wp-content/uploads/2025/02/V-1.jpg" alt="V1 Speed"></td>
        <br>
        <img src="https://www.alsresume.com/wp-content/uploads/2025/03/ASX-icon.jpg"
            alt=“A”SXWiki
            style="display: block; margin: 10px auto; width: 80px; height: auto;">
    </td>
    <td class="description">
        <a href="https://wiki.alsresume.com/index.php?title=AviationSafetyX" target="_blank"
          style="color: #00ff01; font-weight: bold; text-decoration: none; cursor: pointer;"
          onmouseover="this.style.color='#ff4f01';"
          onmouseout="this.style.color='#00ff01';">
            AviationSafetyX
        </a> is a comprehensive aviation safety and knowledge hub, offering expertly curated articles, resources, and visual content dedicated to flight safety, air accident investigation, aircraft systems, and operational integrity. With a database exceeding 5,000 articles, it serves aviation professionals, students, and enthusiasts worldwide. Built on decades of experience, ASX blends technical precision with bold, immersive presentation to enhance aviation understanding, reduce risk, and ultimately help save lives.
    </td>
    <td class="image-column">
        <img src="https://www.alsresume.com/wp-content/uploads/2025/03/ASX-2x-Logo-thumb.jpg" alt="177th FW NJANG Jersey Devils">
    </td>
</tr>
<tr id="177th-fw-njang-jersey-devils">
    <td class="term" style="text-align: center;">
        <a href="https://wiki.alsresume.com/index.php?title=177th_Fighter_Wing" target="_blank"
          style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"
          onmouseover="this.style.color='#ff4f01';"
          onmouseout="this.style.color='#40E0D0';">
            177th FW NJANG
        </a> <br>
        <span style="color: #ac001f; font-style: italic; font-size: 1.2em;">Jersey Devils</span>
        <br>
        <img src="https://www.alsresume.com/wp-content/uploads/2025/03/Jersey-Devils.png"
            alt="Jersey Devils Logo"
            style="display: block; margin: 10px auto; width: 80px; height: auto;">
    </td>
    <td class="description">
        The <a href="https://www.177fw.ang.af.mil/" target="_blank"
          style="color: #00ff01; font-weight: bold; text-decoration: none; cursor: pointer;"
          onmouseover="this.style.color='#ff4f01';"
          onmouseout="this.style.color='#00ff01';">
            177th Fighter Wing (177 FW)
        </a> of the NJANG, the Jersey Devils, currently operate F-16C Fighting Falcons out of
        <span style="color: #00ff01; font-weight: bold; text-decoration: none; cursor: pointer;"
              onmouseover="this.style.color='#ff4f01';"
              onmouseout="this.style.color='#00ff01';"
              onclick="window.open('https://www.google.com/maps/place/39%C2%B027%2729.77%22N+74%C2%B035%2710.47%22W/@39.458269,-74.586242,17z', '_blank')">
            Atlantic City's International Airport (ACY)
        </span>. Tasked with air defense and homeland security, it supports both state and federal missions, including NORAD’s Aerospace Control Alert. The unit, the last operator of the Convair F-106 Delta Dart, has a proud history of combat deployments and domestic operations.
    </td>
    <td class="image-column">
        <img src="https://www.alsresume.com/wp-content/uploads/2025/03/Jersey-Devils.jpg" alt="177th FW NJANG Jersey Devils">
    </td>
</tr>
</tr>


<tr id="Automatic Direction Finder (ADF)">
<tr>
     <td class="term">
     <td class="term">
         <a href="https://wiki.alsresume.com/index.php?title=Automatic_direction_finder" target="_blank"  
         <a href="https://wiki.alsresume.com/index.php?title=V-speeds" target="_blank"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseout="this.style.color='#40E0D0';">
           onmouseout="this.style.color='#40E0D0';">V2 Speed</a>
          Automatic Direction Finder (ADF)
</td>
        </a>
<td class="description">V2 is the takeoff safety speed, providing enough climb performance to maintain altitude with one engine inoperative. It ensures a positive rate of climb while avoiding obstacles. Pilots use V2 until reaching a safe altitude, at which they accelerate further. It is calculated based on aircraft weight, engine performance, and density altitude to ensure safe departure operations.</td>
    </td>
<td class="image-column"><img src="https://www.alsresume.com/wp-content/uploads/2025/02/V-2.jpg" alt="V2 Speed"></td>
    <td class="description">
        A navigation device that receives radio signals from non-directional beacons (NDBs) and displays the bearing to the beacon. Pilots use the ADF for en-route navigation, approaches, and situational awareness, particularly in areas lacking modern navigation aids like GPS or VORs.
    </td>
    <td class="image-column">
        <img src="https://www.alsresume.com/wp-content/uploads/2025/02/ADF.jpg" alt=“ADF”>
    </td>
</tr>
</tr>


<tr id="Aerodynamics">
<tr>
     <td class="term">
     <td class="term">
         <a href="https://wiki.alsresume.com/index.php?title=Aerodynamics" target="_blank"  
         <a href="https://wiki.alsresume.com/index.php?title=V-speeds" target="_blank"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseout="this.style.color='#40E0D0';">
           onmouseout="this.style.color='#40E0D0';">V3 Speed</a>
          Aerodynamics
</td>
        </a>
<td class="description">V3 is an additional takeoff climb speed, used in some aircraft for multi-segment climb profiles. It occurs after V2, providing increased climb efficiency while ensuring engine-out safety margins. Not all aircraft use V3, but it plays a role in aircraft certification and performance calculations for certain complex takeoff scenarios, particularly in larger commercial jets and high-performance aircraft.</td>
    </td>
<td class="image-column"><img src="https://www.alsresume.com/wp-content/uploads/2025/02/V-3.jpg" alt="V3 Speed"></td>
    <td class="description">
        The study of air movement and its interaction with solid objects, such as aircraft. Aerodynamics focuses on lift, drag, thrust, and airflow, determining how an aircraft performs and handles under various flight conditions. Effective aerodynamic design enhances fuel efficiency, speed, and safety.
    </td>
    <td class="image-column">
        <img src="https://www.alsresume.com/wp-content/uploads/2025/02/Aerodynamics.jpg" alt="Aerodynamics">
    </td>
</tr>
</tr>


<tr id="Aerodrome">
<tr>
     <td class="term">
     <td class="term">
         <a href="https://wiki.alsresume.com/index.php?title=Aerodrome" target="_blank"  
         <a href="https://wiki.alsresume.com/index.php?title=V-speeds" target="_blank"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseout="this.style.color='#40E0D0';">
           onmouseout="this.style.color='#40E0D0';">VA (Maneuvering Speed)</a>
          Aerodrome
</td>
        </a>
<td class="description">VA is the maximum speed for full control deflection without causing structural damage. It provides a safety buffer for turbulence and emergency maneuvers. At speeds above VA, abrupt control inputs may overstress the airframe. VA decreases with aircraft weight, meaning lighter aircraft require lower VA values.</td>
    </td>
<td class="image-column"><img src="https://www.alsresume.com/wp-content/uploads/2025/03/V-speed4.jpg" alt="VA (Maneuvering Speed)"></td>
    <td class="description">
        A location for aircraft operations, encompassing runways, taxiways, aprons, hangars, and control towers. Aerodromes range from small airstrips for general aviation to large airports with international capabilities, serving passengers, cargo, and military needs.
    </td>
    <td class="image-column">
        <img src="https://www.alsresume.com/wp-content/uploads/2025/02/Aerodrome.jpg" alt="Aerodrome">
    </td>
</tr>
</tr>


<tr id="Aeronautical Chart">
<tr>
     <td class="term">
     <td class="term">
         <a href="https://wiki.alsresume.com/index.php?title=Sectional_aeronautical_chart" target="_blank"  
         <a href="https://wiki.alsresume.com/index.php?title=V-speeds" target="_blank"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseout="this.style.color='#40E0D0';">
           onmouseout="this.style.color='#40E0D0';">VAPP (Approach Speed)</a>
          Aeronautical Chart
</td>
        </a>
<td class="description">VAPP is the final approach speed, typically higher than the aircraft’s landing reference speed (VREF) to account for wind gusts and maneuvering. It ensures a stable approach, allowing pilots to maintain positive control before touchdown. Pilots adjust VAPP based on landing weight, wind conditions, and operational requirements to ensure a smooth, predictable descent and touchdown.</td>
    </td>
<td class="image-column"><img src="https://www.alsresume.com/wp-content/uploads/2025/02/VAPP.jpg" alt="VAPP (Approach Speed)"></td>
    <td class="description">
        A specialized map for pilots, detailing airspace, navigation aids, terrain, and airport data. Aeronautical charts assist in planning and executing flights, ensuring pilots avoid restricted areas and maintain safe routes.
    </td>
    <td class="image-column">
        <img src="https://www.alsresume.com/wp-content/uploads/2025/02/Aeronautical-Chart.jpg" alt="Aeronautical Chart">
    </td>
</tr>
</tr>


<tr id="Aileron">
<tr>
     <td class="term">
     <td class="term">
         <a href="https://wiki.alsresume.com/index.php?title=Aileron" target="_blank"  
         <a href="https://wiki.alsresume.com/index.php?title=Variable-pitch_propeller_(aeronautics)" target="_blank"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseout="this.style.color='#40E0D0';">
           onmouseout="this.style.color='#40E0D0';">Variable Pitch Propeller</a>
          Aileron
</td>
        </a>
<td class="description">A variable pitch propeller allows pilots to adjust the blade angle to optimize thrust and efficiency during different phases of flight. By changing the pitch, the propeller can maximize performance for takeoff, cruise, and landing. This system improves fuel economy, climb performance, and engine efficiency, making it essential for modern general aviation and commercial aircraft.</td>
    </td>
<td class="image-column"><img src="https://www.alsresume.com/wp-content/uploads/2025/03/Variable-Propellor.jpg" alt="Variable Pitch Propeller"></td>
    <td class="description">
        A hinged control surface on the trailing edge of an aircraft's wing. Ailerons operate in opposite directions on each wing to control the aircraft's roll, allowing it to bank or turn while maintaining lateral stability.
    </td>
    <td class="image-column">
        <img src="https://www.alsresume.com/wp-content/uploads/2025/02/Ailerons.jpg" alt="Aileron">
    </td>
</tr>
</tr>


<tr id="Air Traffic Control (ATC)">
<tr>
     <td class="term">
     <td class="term">
         <a href="https://wiki.alsresume.com/index.php?title=Air_traffic_control" target="_blank"  
         <a href="https://wiki.alsresume.com/index.php?title=V-speeds" target="_blank"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseout="this.style.color='#40E0D0';">
           onmouseout="this.style.color='#40E0D0';">VBE (Best Endurance Speed)</a>
          Air Traffic Control (ATC)
</td>
        </a>
<td class="description">VBE is the speed that maximizes fuel endurance, allowing an aircraft to stay airborne for the longest time with minimal fuel consumption. It is useful for holding patterns, search-and-rescue missions, and fuel conservation during extended flight durations.</td>
    </td>
<td class="image-column"><img src="https://www.alsresume.com/wp-content/uploads/2025/03/V-speed6.jpg" alt="VBE (Best Endurance Speed)"></td>
    <td class="description">
        A service provided by trained personnel to direct aircraft during all phases of flight. ATC ensures safe separation between aircraft, coordinates departures and arrivals, and provides critical information like weather updates and runway conditions.
    </td>
    <td class="image-column">
        <img src="https://www.alsresume.com/wp-content/uploads/2025/02/ATC.jpg" alt="Air Traffic Control (ATC)">
    </td>
</tr>
</tr>
<tr>
<tr>
     <td class="term">
     <td class="term">
         <a href="https://wiki.alsresume.com/index.php?title=Aircraft_Fire_Detection_System" target="_blank"  
         <a href="https://wiki.alsresume.com/index.php?title=Venturi_Effect" target="_blank"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseout="this.style.color='#40E0D0';">Aircraft Fire Detection System
           onmouseout="this.style.color='#40E0D0';">Venturi Effect</a>
        </a>
</td>
    </td>
<td class="description">The Venturi effect describes how airspeed increases and pressure decreases as air flows through a constricted section of a tube or passage. This principle is used in various aircraft systems, such as carburetors and airspeed indicators, to regulate airflow and enhance performance. It plays a crucial role in fluid dynamics and aerodynamics.</td>
    <td class="description">A safety system installed in aircraft to detect and alert pilots of potential fires in the engine, cargo compartments, or cabin. It consists of sensors, alarms, and extinguishing mechanisms to mitigate fire risks and enhance passenger safety.</td>
<td class="image-column"><img src="https://www.alsresume.com/wp-content/uploads/2025/03/Venturi.jpg" alt="Venturi Effect"></td>
    <td class="image-column"><img src="https://www.alsresume.com/wp-content/uploads/2025/02/Fire.jpg" alt="Aircraft Fire Detection System"></td>
</tr>
</tr>


<tr id="Airfoil">
<tr>
     <td class="term">
     <td class="term">
         <a href="https://wiki.alsresume.com/index.php?title=Airfoil" target="_blank"  
         <a href="https://wiki.alsresume.com/index.php?title=Vertical_Navigation_(VNAV)" target="_blank"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseout="this.style.color='#40E0D0';">
           onmouseout="this.style.color='#40E0D0';">Vertical Navigation (VNAV)</a>
          Airfoil
</td>
        </a>
<td class="description">VNAV is an autopilot and flight management system function that calculates and manages altitude changes during a flight. It ensures smooth transitions between climb, cruise, and descent phases by following programmed altitude constraints. VNAV improves fuel efficiency, enhances precision approaches, and reduces pilot workload by automating altitude adjustments based on pre-set flight plans.</td>
    </td>
<td class="image-column"><img src="https://www.alsresume.com/wp-content/uploads/2025/03/Garmin.jpg" alt="Vertical Navigation (VNAV)"></td>
    <td class="description">
        A structure designed to produce lift when air flows over it, typically used in wings, propellers, and helicopter blades. The unique shape of an airfoil maximizes lift while minimizing drag, making it essential for efficient flight.
    </td>
    <td class="image-column">
        <img src="https://www.alsresume.com/wp-content/uploads/2025/02/Airfoil.jpg" alt="Airfoil">
    </td>
</tr>
</tr>


<tr id="Aircraft Classification">
<tr>
     <td class="term">
     <td class="term">
         <a href="https://wiki.alsresume.com/index.php?title=Aircraft_category" target="_blank"  
         <a href="https://wiki.alsresume.com/index.php?title=Vertical_Speed_Indicator_(VSI)" target="_blank"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseout="this.style.color='#40E0D0';">
           onmouseout="this.style.color='#40E0D0';">Vertical Speed Indicator (VSI)</a>
          Aircraft Classification
</td>
        </a>
<td class="description">The VSI is an essential flight instrument that displays an aircraft’s rate of climb or descent, usually measured in feet per minute (fpm). It helps pilots maintain proper altitude adjustments, detect unintentional altitude deviations, and execute smooth descents or climbs. The VSI operates using static air pressure differences to determine vertical movement and provide real-time data.</td>
    </td>
<td class="image-column"><img src="https://www.alsresume.com/wp-content/uploads/2025/03/VSI.jpg" alt="Vertical Speed Indicator (VSI)"></td>
    <td class="description">
        A categorization system that groups aircraft by type, weight, purpose, and performance. Examples include commercial jets, light aircraft, helicopters, drones, and gliders, each requiring specific pilot certifications and operational procedures.
    </td>
    <td class="image-column">
        <img src="https://www.alsresume.com/wp-content/uploads/2025/02/Aircraft-Classifications.jpg" alt="Aircraft Classification">
    </td>
</tr>
</tr>


<tr id="Aircraft Identification">
<tr>
     <td class="term">
     <td class="term">
         <a href="https://wiki.alsresume.com/index.php?title=Aircraft_registration" target="_blank"  
         <a href="https://wiki.alsresume.com/index.php?title=Vertical_Takeoff_and_Landing_(VTOL)" target="_blank"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseout="this.style.color='#40E0D0';">
           onmouseout="this.style.color='#40E0D0';">Vertical Takeoff and Landing (VTOL)</a>
          Aircraft Identification
</td>
        </a>
<td class="description">VTOL aircraft can take off and land vertically, eliminating the need for runways. Examples include helicopters, tiltrotor aircraft like the V-22 Osprey, and jet-powered aircraft such as the Harrier Jump Jet. VTOL technology is widely used in military, search-and-rescue, and emerging urban air mobility sectors to enable efficient operations in confined spaces.</td>
    </td>
<td class="image-column"><img src="https://www.alsresume.com/wp-content/uploads/2025/03/VTOL.jpg" alt="Vertical Takeoff and Landing (VTOL)"></td>
    <td class="description">
        A unique code, often called a registration number or tail number, assigned to each aircraft. This identifier is used during communication with air traffic control, flight tracking, and legal documentation.
    </td>
    <td class="image-column">
        <img src="https://www.alsresume.com/wp-content/uploads/2025/02/Aircraft-Identification.jpg" alt="Aircraft Identification">
    </td>
</tr>
</tr>


<tr id="Aircraft Maintenance Manual (AMM)">
<tr>
     <td class="term">
     <td class="term">
         <a href="https://wiki.alsresume.com/index.php?title=Aircraft_maintenance_technician" target="_blank"  
         <a href="https://wiki.alsresume.com/index.php?title=V-speeds" target="_blank"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseout="this.style.color='#40E0D0';">
           onmouseout="this.style.color='#40E0D0';">VFC (Maximum Speed for Stability Failure)</a>
          Aircraft Maintenance Manual (AMM)
</td>
        </a>
<td class="description">VFC is the highest speed before stability control failures occur, providing a margin before encountering flutter or aerodynamic instability. It is critical in high-speed aircraft where stability augmentation systems are necessary.</td>
    </td>
<td class="image-column"><img src="https://www.alsresume.com/wp-content/uploads/2025/03/V-speed7.jpg" alt="VFC (Maximum Speed for Stability Failure)"></td>
    <td class="description">
        A detailed document provided by aircraft manufacturers outlining inspection, repair, and servicing procedures. The AMM ensures that maintenance teams follow precise standards to keep the aircraft airworthy.
    </td>
    <td class="image-column">
        <img src="https://www.alsresume.com/wp-content/uploads/2025/02/Aircraft-Maintenance-Manual.jpg" alt="Aircraft Maintenance Manual (AMM)">
    </td>
</tr>
</tr>


<tr id="Airworthiness Certificate">
<tr>
     <td class="term">
     <td class="term">
         <a href="https://en.wikipedia.org/wiki/Airworthiness_certificate#Standard_airworthiness_certificate" target="_blank"  
         <a href="https://wiki.alsresume.com/index.php?title=V-speeds" target="_blank"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseout="this.style.color='#40E0D0';">
           onmouseout="this.style.color='#40E0D0';">VFE (Maximum Flap Extended Speed)</td>
          Airworthiness Certificate
<td class="description">VFE is the highest speed allowed with flaps extended. Flaps improve lift at lower speeds but also increase drag. Exceeding VFE can cause structural damage to the flaps or reduce aircraft control effectiveness. Each aircraft has multiple VFE limits based on different flap positions. Proper flap management is crucial for safe takeoffs, approaches, and landings.</td>
        </a>
<td class="image-column"><img src="https://www.alsresume.com/wp-content/uploads/2025/02/Flaps.jpg" alt="VFE (Maximum Flap Extended Speed)"></td>
    </td>
    <td class="description">
        A document issued by aviation authorities certifying that an aircraft meets safety standards. It is required for legal operation and is renewed periodically through inspections and compliance with maintenance regulations.
    </td>
    <td class="image-column">
        <img src="https://www.alsresume.com/wp-content/uploads/2025/02/Airworthiness-Certificate.jpg" alt="Airworthiness Certificate">
    </td>
</tr>
</tr>


<tr id="Altimeter">
<tr>
     <td class="term">
     <td class="term">
         <a href="https://wiki.alsresume.com/index.php?title=Altimeter" target="_blank"  
         <a href="https://wiki.alsresume.com/index.php?title=Visual_Approach" target="_blank"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseout="this.style.color='#40E0D0';">
           onmouseout="this.style.color='#40E0D0';">Visual Approach</a>
          Altimeter
</td>
        </a>
<td class="description">A visual approach is a landing procedure in which the pilot navigates using external visual references instead of relying solely on instrument guidance. It is typically authorized by air traffic control (ATC) when weather conditions allow for clear visibility of the airport and runway environment. Pilots must maintain separation from other aircraft and follow ATC instructions while ensuring a stable descent.</td>
    </td>
<td class="image-column"><img src="https://www.alsresume.com/wp-content/uploads/2025/03/Visual-Approach.jpg" alt="Visual Approach"></td>
    <td class="description">
        A cockpit instrument that measures altitude by detecting changes in atmospheric pressure. Altimeters display altitude above sea level and are critical for avoiding obstacles and maintaining proper airspace separation.
    </td>
    <td class="image-column">
        <img src="https://www.alsresume.com/wp-content/uploads/2025/02/Altimeter.jpg" alt="Altimeter">
    </td>
</tr>
</tr>


<tr id="Angle of Attack">
<tr>
     <td class="term">
     <td class="term">
         <a href="https://wiki.alsresume.com/index.php?title=Angle_of_attack" target="_blank"  
         <a href="https://wiki.alsresume.com/index.php?title=Visual_Meteorological_Conditions_(VMC)" target="_blank"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseout="this.style.color='#40E0D0';">
           onmouseout="this.style.color='#40E0D0';">Visual Meteorological Conditions (VMC)</a>
        Angle of Attack
</td>
        </a>
<td class="description">VMC refers to weather conditions that meet or exceed the minimum visibility and cloud clearance requirements necessary for visual flight. These conditions allow pilots to operate without reliance on instruments, using external references such as the horizon and landmarks. Regulations for VMC vary by airspace and country, ensuring safety by maintaining adequate separation between aircraft.</td>
    </td>
<td class="image-column"><img src="https://www.alsresume.com/wp-content/uploads/2025/03/VMC.jpg" alt="Visual Meteorological Conditions (VMC)"></td>
    <td class="description">
        The angle between the chord line of an airfoil and the relative wind. AOA directly impacts lift and drag, and exceeding the critical angle can cause a stall, making it a critical parameter for flight safety.
    </td>
    <td class="image-column">
        <img src="https://www.alsresume.com/wp-content/uploads/2025/02/Angle-of-Attack.jpg" alt="Angle of Attack">
    </td>
</tr>
</tr>


<tr id="Angle of Incidence">
<tr>
     <td class="term">
     <td class="term">
         <a href="https://wiki.alsresume.com/index.php?title=Angle_of_Incidence" target="_blank"  
         <a href="https://wiki.alsresume.com/index.php?title=V-speeds" target="_blank"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseout="this.style.color='#40E0D0';">
           onmouseout="this.style.color='#40E0D0';">VLE (Maximum Landing Gear Extended Speed)</a>
        Angle of Incidence
</td>
        </a>
<td class="description">VLE is the fastest speed an aircraft can safely fly with landing gear extended. While different from VLO (gear operation speed), VLE is critical for ensuring safe flight during emergency landing scenarios, where pilots may keep the gear extended beyond normal operating conditions.</td>
    </td>
<td class="image-column"><img src="https://www.alsresume.com/wp-content/uploads/2025/03/Retract.jpg" alt="VLE (Maximum Landing Gear Extended Speed)"></td>
    <td class="description">
        The fixed angle between an aircraft wing's chord line and the longitudinal axis of the aircraft. It is determined during design and construction to optimize lift and performance without requiring pilot adjustment
    </td>
    <td class="image-column">
        <img src="https://www.alsresume.com/wp-content/uploads/2025/02/Angle-of-Incidence.jpg" alt="Angle of Incidence">
    </td>
</tr>
</tr>


<tr id="Anti-Ice System">
<tr>
     <td class="term">
     <td class="term">
         <a href="https://wiki.alsresume.com/index.php?title=Ice_protection_system" target="_blank"  
         <a href="https://wiki.alsresume.com/index.php?title=V-speeds" target="_blank"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseout="this.style.color='#40E0D0';">
           onmouseout="this.style.color='#40E0D0';">VLO (Landing Gear Operating Speed)</a>
        Anti-Ice System
</td>
        </a>
<td class="description">VLO is the maximum speed at which landing gear can be extended or retracted safely. Exceeding this speed while operating the gear could cause mechanical failure or excessive aerodynamic stress. It differs from VLE (Landing Gear Extended Speed), which is the maximum speed the aircraft can sustain with the gear already deployed.</td>
    </td>
<td class="image-column"><img src="https://www.alsresume.com/wp-content/uploads/2025/02/Landing-ear.jpg" alt="VLO (Landing Gear Operating Speed)"></td>
    <td class="description">
        A system used to prevent the formation of ice on critical surfaces like wings, engines, and windshields. Anti-ice systems use heated surfaces, pneumatic boots, or chemical solutions to maintain safety in icy conditions.
    </td>
    <td class="image-column">
        <img src="https://www.alsresume.com/wp-content/uploads/2025/02/Anti-Icing.jpg" alt="Anti-Ice System">
    </td>
</tr>
</tr>


<tr id="Approach Plate">
<tr>
     <td class="term">
     <td class="term">
         <a href="https://wiki.alsresume.com/index.php?title=Approach_plate" target="_blank"  
         <a href="https://wiki.alsresume.com/index.php?title=V-speeds" target="_blank"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseout="this.style.color='#40E0D0';">
           onmouseout="this.style.color='#40E0D0';">VMAX (Maximum Possible Speed)</a>
      Approach Plate
</td>
        </a>
<td class="description">VMAX is the absolute fastest speed an aircraft can achieve, dictated by aerodynamic, structural, and engine power limits. Unlike VNE, which prevents dangerous speeds, VMAX is the theoretical maximum under ideal conditions.</td>
    </td>
<td class="image-column"><img src="https://www.alsresume.com/wp-content/uploads/2025/03/VMax.jpg" alt="VMAX (Maximum Possible Speed)"></td>
    <td class="description">
        A detailed chart used in instrument flight rules (IFR) to guide pilots during an approach to a runway. It provides information on headings, altitudes, navigation aids, and missed approach procedures.
    </td>
    <td class="image-column">
        <img src="https://www.alsresume.com/wp-content/uploads/2025/02/Approach-Plate.jpg" alt="Approach Plate">
    </td>
</tr>
</tr>


<tr id="APU (Auxiliary Power Unit)">
<tr>
     <td class="term">
     <td class="term">
         <a href="https://wiki.alsresume.com/index.php?title=Auxiliary_power_unit" target="_blank"  
         <a href="https://wiki.alsresume.com/index.php?title=V-speeds" target="_blank"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseout="this.style.color='#40E0D0';">
           onmouseout="this.style.color='#40E0D0';">VMC (Minimum Control Speed)</a>
        APU (Auxiliary Power Unit)
</td>
        </a>
<td class="description">VMC is the minimum speed at which a multi-engine aircraft can maintain directional control with one engine inoperative. Below this speed, aerodynamic forces overpower the rudder’s ability to compensate for asymmetric thrust, leading to loss of control. VMC is tested during aircraft certification and is a critical parameter for pilots during engine-out scenarios.</td>
    </td>
<td class="image-column"><img src="https://www.alsresume.com/wp-content/uploads/2025/02/MCAS.jpg" alt="VMC (Minimum Control Speed)"></td>
    <td class="description">
        A small turbine engine located in the aircraft's tail section. The APU provides power for electrical systems and air conditioning while on the ground and assists in starting the main engines.
    </td>
    <td class="image-column">
        <img src="https://www.alsresume.com/wp-content/uploads/2025/02/APU.jpg" alt="APU (Auxiliary Power Unit)">
    </td>
</tr>
</tr>


<tr id="area-51">
<tr>
     <td class="term">
     <td class="term">
         <a href="https://wiki.alsresume.com/index.php?title=Area_51" target="_blank"  
         <a href="https://wiki.alsresume.com/index.php?title=V-speeds" target="_blank"  
           style="color: #00ff01; font-weight: bold; text-decoration: none; cursor: pointer;"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseout="this.style.color='#00ff01';">
           onmouseout="this.style.color='#40E0D0';">VMD (Minimum Drag Speed)</a>
          Area 51/Groom Lake/R-4808 N
</td>
        </a>
<td class="description">VMD is the speed where induced drag and parasite drag are balanced, providing the best lift-to-drag ratio. Flying at VMD optimizes fuel efficiency, making it crucial for long-haul flights.</td>
    </td>
<td class="image-column"><img src="https://www.alsresume.com/wp-content/uploads/2025/03/V-Drag.jpg" alt="VMD (Minimum Drag Speed)"></td>
    <td class="description">
        <span style="color: #00ff01; font-weight: bold; text-decoration: none; cursor: pointer;"
              onmouseover="this.style.color='#ff4f01';"
              onmouseout="this.style.color='#00ff01';"
              onclick="window.open('https://www.google.com/maps/@37.2815,-115.805667,15z/data=!3m1!1e3', '_blank')">
              Area 51/Groom Lake
        </span> is a highly classified U.S. Air Force facility located in southern Nevada, officially known as Homey Airport or Groom Lake. Established in 1955 for testing the Lockheed U-2 aircraft, its operations remain secretive, fueling numerous UFO conspiracy theories. The CIA publicly acknowledged its existence in 2013. Situated 83 miles northwest of Las Vegas, the area attracts tourists, especially to the nearby town of Rachel on the "Extraterrestrial Highway."
    </td>
    <td class="image-column">
        <img src="https://www.alsresume.com/wp-content/uploads/2025/03/Area-51.jpg" alt="Area 51/Groom Lake/R-4808 N">
    </td>
</tr>
</tr>


<tr id="Area Navigation (RNAV)">
<tr>
     <td class="term">
     <td class="term">
         <a href="https://wiki.alsresume.com/index.php?title=Area_navigation" target="_blank"  
         <a href="https://wiki.alsresume.com/index.php?title=V-speeds" target="_blank"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseout="this.style.color='#40E0D0';">
           onmouseout="this.style.color='#40E0D0';">VMO (Maximum Operating Speed)</a>
          Area Navigation (RNAV)
</td>
        </a>
<td class="description">VMO is the fastest speed an aircraft can operate under normal conditions without exceeding structural or aerodynamic limits. Exceeding VMO risks control surface flutter, increased drag, and possible structural damage. At higher altitudes, VMO transitions into MMO (Mach Maximum Operating Speed), as compressibility effects become more critical than airspeed limitations.</td>
    </td>
<td class="image-column"><img src="https://www.alsresume.com/wp-content/uploads/2025/02/VMO.jpg" alt="VMO (Maximum Operating Speed)"></td>
    <td class="description">
        A navigation system that allows aircraft to follow direct routes between any two points, rather than being restricted to paths defined by ground-based navigation aids. RNAV improves efficiency and reduces travel time.
    </td>
    <td class="image-column">
        <img src="https://www.alsresume.com/wp-content/uploads/2025/02/Area-Navigation.jpg" alt="Area Navigation (RNAV)">
    </td>
</tr>
</tr>


<tr id="ARTCC (Air Route Traffic Control Center)">
<tr>
     <td class="term">
     <td class="term">
         <a href="https://wiki.alsresume.com/index.php?title=Area_control_center" target="_blank"  
         <a href="https://wiki.alsresume.com/index.php?title=V-speeds" target="_blank"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseout="this.style.color='#40E0D0';">
           onmouseout="this.style.color='#40E0D0';">VNE (Never Exceed Speed)</a>
        ARTCC (Air Route Traffic Control Center)
</td>
        </a>
<td class="description">VNE is the absolute speed limit for an aircraft, beyond which structural failure may occur. Marked by a red line on the airspeed indicator, exceeding VNE can result in catastrophic damage. It factors in aerodynamic forces, material limitations, and aircraft design. Pilots are trained to avoid approaching VNE under any circumstances.</td>
    </td>
<td class="image-column"><img src="https://www.alsresume.com/wp-content/uploads/2025/02/VNE.jpg" alt="VNE (Never Exceed Speed)"></td>
    <td class="description">
        A facility that manages en-route air traffic in controlled airspace. ARTCC controllers ensure safe separation between aircraft during cruise phases of flight.
    </td>
    <td class="image-column">
        <img src="https://www.alsresume.com/wp-content/uploads/2025/02/ARTCC.jpg" alt="ARTCC (Air Route Traffic Control Center)">
    </td>
</tr>
</tr>


<tr id="Aspect Ratio">
<tr>
     <td class="term">
     <td class="term">
         <a href="https://wiki.alsresume.com/index.php?title=Aspect_Ratio" target="_blank"  
         <a href="https://wiki.alsresume.com/index.php?title=VHF_omnidirectional_range" target="_blank"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseout="this.style.color='#40E0D0';">
           onmouseout="this.style.color='#40E0D0';">VOR (VHF Omnidirectional Range)</a>
        Aspect Ratio
</td>
        </a>
<td class="description">VOR is a widely used ground-based radio navigation system that provides aircraft with azimuth information to determine their bearing relative to a station. It operates in the very high-frequency (VHF) range and enables pilots to navigate accurately along airways or establish approach paths. Many modern aircraft integrate VOR with other navigation systems such as GPS.</td>
    </td>
<td class="image-column"><img src="https://www.alsresume.com/wp-content/uploads/2025/03/VOR.jpg" alt="VOR (VHF Omnidirectional Range)"></td>
    <td class="description">
        he ratio of an aircraft's wingspan to its average chord (width). High aspect ratios reduce drag and improve fuel efficiency, while low aspect ratios enhance maneuverability.
    </td>
    <td class="image-column">
        <img src="https://www.alsresume.com/wp-content/uploads/2025/02/Aspect-Ratio.jpg" alt="Aspect Ratio">
    </td>
</tr>
</tr>


<tr id="Altitude">
<tr>
     <td class="term">
     <td class="term">
         <a href="https://wiki.alsresume.com/index.php?title=Altitude" target="_blank"  
         <a href="https://wiki.alsresume.com/index.php?title=Vortex_Generator" target="_blank"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseout="this.style.color='#40E0D0';">
           onmouseout="this.style.color='#40E0D0';">Vortex Generator</a>
          Altitude
</td>
        </a>
<td class="description">A vortex generator is a small aerodynamic device installed on an aircraft’s wings, tail, or fuselage to improve airflow and reduce aerodynamic drag. It creates controlled turbulence, which enhances the performance of control surfaces, increases lift, and delays airflow separation. Vortex generators are commonly used on high-performance aircraft to optimize stability, control, and fuel efficiency.</td>
    </td>
<td class="image-column"><img src="https://www.alsresume.com/wp-content/uploads/2025/03/Vortex-Gens.jpg" alt="Vortex Generator"></td>
    <td class="description">
        The vertical distance between an aircraft and a reference point, typically sea level or ground level. Altitude is measured using an altimeter and is categorized into pressure altitude, true altitude, and indicated altitude.
    </td>
    <td class="image-column">
        <img src="https://www.alsresume.com/wp-content/uploads/2025/02/Altitude.jpg" alt="Altitude">
    </td>
</tr>
</tr>


<tr id="Augmentor">
<tr>
     <td class="term">
     <td class="term">
         <a href="https://wiki.alsresume.com/index.php?title=General_Electric_F110" target="_blank"  
         <a href="https://wiki.alsresume.com/index.php?title=V-speeds" target="_blank"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseout="this.style.color='#40E0D0';">
           onmouseout="this.style.color='#40E0D0';">VPD (Parachute Deployment Speed)</a>
        Augmentor
</td>
        </a>
<td class="description">VPD is the maximum airspeed at which an emergency parachute system can be safely deployed. Found in some general aviation aircraft with ballistic recovery systems (BRS), exceeding VPD may cause the parachute to fail or rip apart upon deployment.</td>
    </td>
<td class="image-column"><img src="https://www.alsresume.com/wp-content/uploads/2025/03/Parachute-deployment-speed.jpg" alt="VPD (Parachute Deployment Speed)"></td>
    <td class="description">
        An augmenter is an older Pratt & Whitney term for an afterburner—a secondary combustion system that injects fuel into the exhaust to boost thrust. Used in early F100-powered F-16s, it enhanced supersonic performance. The term faded as “afterburner” became standard across military engine platforms. Thanks, Matthew McKee, for the suggestion!
    </td>
    <td class="image-column">
        <img src="https://www.alsresume.com/wp-content/uploads/2025/03/Augmentor.jpg" alt="Augmentor">
    </td>
</tr>
</tr>


<tr id="Autoland">
<tr>
     <td class="term">
     <td class="term">
         <a href="https://wiki.alsresume.com/index.php?title=Autoland" target="_blank"  
         <a href="https://wiki.alsresume.com/index.php?title=V-speeds" target="_blank"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseout="this.style.color='#40E0D0';">
           onmouseout="this.style.color='#40E0D0';">VR (Rotation Speed)</a>
        Autoland
</td>
        </a>
<td class="description">VR is the speed at which a pilot initiates nose-up rotation during takeoff, transitioning the aircraft from ground roll to climb. It is based on aircraft weight, balance, and environmental factors. If rotation occurs too early or late, performance issues such as tail strikes or runway overruns may occur.</td>
    </td>
<td class="image-column"><img src="https://www.alsresume.com/wp-content/uploads/2025/03/V-speed.jpg" alt="VR (Rotation Speed)"></td>
    <td class="description">
        An advanced system that automates the landing process. Used in low-visibility conditions, autoland controls the aircraft's descent, flare, and touchdown, ensuring precision and safety.
    </td>
    <td class="image-column">
        <img src="https://www.alsresume.com/wp-content/uploads/2025/02/Autoland.jpg" alt="Autoland">
    </td>
</tr>
</tr>


<tr id="Automatic Dependent Surveillance-Broadcast (ADS-B)">
<tr>
     <td class="term">
     <td class="term">
         <a href="https://wiki.alsresume.com/index.php?title=Automatic_Dependent_Surveillance%E2%80%93Broadcast" target="_blank"  
         <a href="https://wiki.alsresume.com/index.php?title=V-speeds" target="_blank"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseout="this.style.color='#40E0D0';">
           onmouseout="this.style.color='#40E0D0';">VREF (Landing Reference Speed)</a>
        Automatic Dependent Surveillance-Broadcast (ADS-B)
</td>
        </a>
<td class="description">VREF is the final approach reference speed, ensuring a stable descent and landing. It is calculated based on landing weight, wind conditions, and flap configuration. A proper VREF approach allows for a safe touchdown while maintaining control authority for a possible go-around if necessary.</td>
    </td>
<td class="image-column"><img src="https://www.alsresume.com/wp-content/uploads/2025/03/V-speed5.jpg" alt="VREF (Landing Reference Speed)"></td>
    <td class="description">
        A surveillance technology where an aircraft broadcasts its position, speed, altitude, and other data. ADS-B improves situational awareness and enhances air traffic management..
    </td>
    <td class="image-column">
        <img src="https://www.alsresume.com/wp-content/uploads/2025/02/ADS-B.jpg" alt="Automatic Dependent Surveillance-Broadcast (ADS-B)">
    </td>
</tr>
</tr>


<tr id=" Automatic Direction Finder (ADF)">
<tr>
     <td class="term">
     <td class="term">
         <a href="https://wiki.alsresume.com/index.php?title=ADF" target="_blank"  
         <a href="https://wiki.alsresume.com/index.php?title=V-Tail_Configuration" target="_blank"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseout="this.style.color='#40E0D0';">
           onmouseout="this.style.color='#40E0D0';">V-Tail Configuration</a>
        Automatic Direction Finder (ADF)
</td>
        </a>
<td class="description">A V-tail configuration replaces the traditional vertical and horizontal stabilizers with two surfaces forming a V-shape. This design reduces drag and weight while improving aircraft efficiency. Common in light aircraft and unmanned aerial vehicles, V-tail configurations require specialized flight controls, as the rudder and elevator functions are combined into control surfaces called ruddervators.</td>
    </td>
<td class="image-column"><img src="https://www.alsresume.com/wp-content/uploads/2025/03/VTail.jpg" alt="V-Tail Configuration"></td>
    <td class="description">
        A navigation aid that uses radio signals from NDBs to determine the direction of a beacon relative to the aircraft. ADF is especially useful in remote areas where GPS and other systems may not be available.
    </td>
    <td class="image-column">
        <img src="https://www.alsresume.com/wp-content/uploads/2025/02/ADF2.jpg" alt=" Automatic Direction Finder (ADF)">
    </td>
</tr>
</tr>


<tr id="Autopilot">
<tr>
     <td class="term">
     <td class="term">
         <a href="https://wiki.alsresume.com/index.php?title=Autopilot" target="_blank"  
         <a href="https://wiki.alsresume.com/index.php?title=V-speeds" target="_blank"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseout="this.style.color='#40E0D0';">
           onmouseout="this.style.color='#40E0D0';">VX (Best Angle-of-Climb Speed)</a>
        Autopilot
</td>
        </a>
<td class="description">VX provides the steepest climb angle relative to horizontal distance, used for clearing obstacles near the runway. While VX allows for the greatest altitude gain over distance, it sacrifices airspeed. It is essential for short-field takeoffs, where rapid altitude gain is necessary due to terrain or other obstructions.</td>
    </td>
<td class="image-column"><img src="https://www.alsresume.com/wp-content/uploads/2025/03/V-speed2.jpg" alt="VX (Best Angle-of-Climb Speed)"></td>
    <td class="description">
        A system that automates control of the aircraft's flight path. Autopilot maintains heading, altitude, and course, reducing pilot workload, especially during long flights or adverse weather.
    </td>
    <td class="image-column">
        <img src="https://www.alsresume.com/wp-content/uploads/2025/02/Autopilot.jpg" alt="Autopilot">
    </td>
</tr>
</tr>


<tr id="Aviation Meteorology">
<tr>
     <td class="term">
     <td class="term">
         <a href="https://wiki.alsresume.com/index.php?title=Meteorology#Aviation_meteorology" target="_blank"  
         <a href="https://wiki.alsresume.com/index.php?title=V-speeds" target="_blank"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseover="this.style.color='#ff4f01';"  
           onmouseout="this.style.color='#40E0D0';">
           onmouseout="this.style.color='#40E0D0';">VY (Best Rate-of-Climb Speed)</a>
        Aviation Meteorology
</td>
        </a>
<td class="description">VY allows for the fastest altitude gain over time, maximizing climb performance while maintaining a safe airspeed. It is the most efficient climb speed used in normal operations and cruise climb. While VX provides the steepest climb, VY is more useful for reaching cruising altitude quickly.</td>
    </td>
<td class="image-column"><img src="https://www.alsresume.com/wp-content/uploads/2025/03/V-speed3.jpg" alt="VY (Best Rate-of-Climb Speed)"></td>
    <td class="description">
        The study of weather and its impact on aviation operations. Aviation meteorology covers phenomena such as turbulence, wind shear, icing, thunderstorms, and jet streams to ensure flight safety and efficiency.
    </td>
    <td class="image-column">
        <img src="https://www.alsresume.com/wp-content/uploads/2025/02/Aviation-Meteorology.jpg" alt="Aviation Meteorology">
    </td>
</tr>


<tr id="Avionics">
    <td class="term">
        <a href="https://wiki.alsresume.com/index.php?title=Avionics" target="_blank"
          style="color: #40E0D0; font-weight: bold; text-decoration: none; cursor: pointer;"
          onmouseover="this.style.color='#ff4f01';"
          onmouseout="this.style.color='#40E0D0';">
        Avionics
        </a>
    </td>
    <td class="description">
        The electronic systems used in aircraft, including navigation, communication, and monitoring systems. Avionics advancements have revolutionized aviation, enabling precision navigation, real-time communication, and comprehensive flight data monitoring.
    </td>
    <td class="image-column">
        <img src="https://www.alsresume.com/wp-content/uploads/2025/02/Avionics.jpg" alt="Avionics">
    </td>
</tr>
</tr>
 
</table>
    </table>
</body>
</body>
</html>
</html>

Latest revision as of 19:39, 23 April 2025


Glossary Navigation Menu
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Glossary Instructions

Click on term for full definition Click here to report corrections and content addition requests

Aviation Glossary - A

V1 Speed V1 is the takeoff decision speed, where the pilot must either abort or commit to takeoff. If an engine fails before V1, stopping is still possible. Beyond V1, the aircraft must take off due to insufficient runway remaining to stop safely. This speed varies based on aircraft weight, runway length, and environmental conditions such as wind and temperature. V1 Speed
V2 Speed V2 is the takeoff safety speed, providing enough climb performance to maintain altitude with one engine inoperative. It ensures a positive rate of climb while avoiding obstacles. Pilots use V2 until reaching a safe altitude, at which they accelerate further. It is calculated based on aircraft weight, engine performance, and density altitude to ensure safe departure operations. V2 Speed
V3 Speed V3 is an additional takeoff climb speed, used in some aircraft for multi-segment climb profiles. It occurs after V2, providing increased climb efficiency while ensuring engine-out safety margins. Not all aircraft use V3, but it plays a role in aircraft certification and performance calculations for certain complex takeoff scenarios, particularly in larger commercial jets and high-performance aircraft. V3 Speed
VA (Maneuvering Speed) VA is the maximum speed for full control deflection without causing structural damage. It provides a safety buffer for turbulence and emergency maneuvers. At speeds above VA, abrupt control inputs may overstress the airframe. VA decreases with aircraft weight, meaning lighter aircraft require lower VA values. VA (Maneuvering Speed)
VAPP (Approach Speed) VAPP is the final approach speed, typically higher than the aircraft’s landing reference speed (VREF) to account for wind gusts and maneuvering. It ensures a stable approach, allowing pilots to maintain positive control before touchdown. Pilots adjust VAPP based on landing weight, wind conditions, and operational requirements to ensure a smooth, predictable descent and touchdown. VAPP (Approach Speed)
Variable Pitch Propeller A variable pitch propeller allows pilots to adjust the blade angle to optimize thrust and efficiency during different phases of flight. By changing the pitch, the propeller can maximize performance for takeoff, cruise, and landing. This system improves fuel economy, climb performance, and engine efficiency, making it essential for modern general aviation and commercial aircraft. Variable Pitch Propeller
VBE (Best Endurance Speed) VBE is the speed that maximizes fuel endurance, allowing an aircraft to stay airborne for the longest time with minimal fuel consumption. It is useful for holding patterns, search-and-rescue missions, and fuel conservation during extended flight durations. VBE (Best Endurance Speed)
Venturi Effect The Venturi effect describes how airspeed increases and pressure decreases as air flows through a constricted section of a tube or passage. This principle is used in various aircraft systems, such as carburetors and airspeed indicators, to regulate airflow and enhance performance. It plays a crucial role in fluid dynamics and aerodynamics. Venturi Effect
Vertical Navigation (VNAV) VNAV is an autopilot and flight management system function that calculates and manages altitude changes during a flight. It ensures smooth transitions between climb, cruise, and descent phases by following programmed altitude constraints. VNAV improves fuel efficiency, enhances precision approaches, and reduces pilot workload by automating altitude adjustments based on pre-set flight plans. Vertical Navigation (VNAV)
Vertical Speed Indicator (VSI) The VSI is an essential flight instrument that displays an aircraft’s rate of climb or descent, usually measured in feet per minute (fpm). It helps pilots maintain proper altitude adjustments, detect unintentional altitude deviations, and execute smooth descents or climbs. The VSI operates using static air pressure differences to determine vertical movement and provide real-time data. Vertical Speed Indicator (VSI)
Vertical Takeoff and Landing (VTOL) VTOL aircraft can take off and land vertically, eliminating the need for runways. Examples include helicopters, tiltrotor aircraft like the V-22 Osprey, and jet-powered aircraft such as the Harrier Jump Jet. VTOL technology is widely used in military, search-and-rescue, and emerging urban air mobility sectors to enable efficient operations in confined spaces. Vertical Takeoff and Landing (VTOL)
VFC (Maximum Speed for Stability Failure) VFC is the highest speed before stability control failures occur, providing a margin before encountering flutter or aerodynamic instability. It is critical in high-speed aircraft where stability augmentation systems are necessary. VFC (Maximum Speed for Stability Failure)
VFE (Maximum Flap Extended Speed) VFE is the highest speed allowed with flaps extended. Flaps improve lift at lower speeds but also increase drag. Exceeding VFE can cause structural damage to the flaps or reduce aircraft control effectiveness. Each aircraft has multiple VFE limits based on different flap positions. Proper flap management is crucial for safe takeoffs, approaches, and landings. VFE (Maximum Flap Extended Speed)
Visual Approach A visual approach is a landing procedure in which the pilot navigates using external visual references instead of relying solely on instrument guidance. It is typically authorized by air traffic control (ATC) when weather conditions allow for clear visibility of the airport and runway environment. Pilots must maintain separation from other aircraft and follow ATC instructions while ensuring a stable descent. Visual Approach
Visual Meteorological Conditions (VMC) VMC refers to weather conditions that meet or exceed the minimum visibility and cloud clearance requirements necessary for visual flight. These conditions allow pilots to operate without reliance on instruments, using external references such as the horizon and landmarks. Regulations for VMC vary by airspace and country, ensuring safety by maintaining adequate separation between aircraft. Visual Meteorological Conditions (VMC)
VLE (Maximum Landing Gear Extended Speed) VLE is the fastest speed an aircraft can safely fly with landing gear extended. While different from VLO (gear operation speed), VLE is critical for ensuring safe flight during emergency landing scenarios, where pilots may keep the gear extended beyond normal operating conditions. VLE (Maximum Landing Gear Extended Speed)
VLO (Landing Gear Operating Speed) VLO is the maximum speed at which landing gear can be extended or retracted safely. Exceeding this speed while operating the gear could cause mechanical failure or excessive aerodynamic stress. It differs from VLE (Landing Gear Extended Speed), which is the maximum speed the aircraft can sustain with the gear already deployed. VLO (Landing Gear Operating Speed)
VMAX (Maximum Possible Speed) VMAX is the absolute fastest speed an aircraft can achieve, dictated by aerodynamic, structural, and engine power limits. Unlike VNE, which prevents dangerous speeds, VMAX is the theoretical maximum under ideal conditions. VMAX (Maximum Possible Speed)
VMC (Minimum Control Speed) VMC is the minimum speed at which a multi-engine aircraft can maintain directional control with one engine inoperative. Below this speed, aerodynamic forces overpower the rudder’s ability to compensate for asymmetric thrust, leading to loss of control. VMC is tested during aircraft certification and is a critical parameter for pilots during engine-out scenarios. VMC (Minimum Control Speed)
VMD (Minimum Drag Speed) VMD is the speed where induced drag and parasite drag are balanced, providing the best lift-to-drag ratio. Flying at VMD optimizes fuel efficiency, making it crucial for long-haul flights. VMD (Minimum Drag Speed)
VMO (Maximum Operating Speed) VMO is the fastest speed an aircraft can operate under normal conditions without exceeding structural or aerodynamic limits. Exceeding VMO risks control surface flutter, increased drag, and possible structural damage. At higher altitudes, VMO transitions into MMO (Mach Maximum Operating Speed), as compressibility effects become more critical than airspeed limitations. VMO (Maximum Operating Speed)
VNE (Never Exceed Speed) VNE is the absolute speed limit for an aircraft, beyond which structural failure may occur. Marked by a red line on the airspeed indicator, exceeding VNE can result in catastrophic damage. It factors in aerodynamic forces, material limitations, and aircraft design. Pilots are trained to avoid approaching VNE under any circumstances. VNE (Never Exceed Speed)
VOR (VHF Omnidirectional Range) VOR is a widely used ground-based radio navigation system that provides aircraft with azimuth information to determine their bearing relative to a station. It operates in the very high-frequency (VHF) range and enables pilots to navigate accurately along airways or establish approach paths. Many modern aircraft integrate VOR with other navigation systems such as GPS. VOR (VHF Omnidirectional Range)
Vortex Generator A vortex generator is a small aerodynamic device installed on an aircraft’s wings, tail, or fuselage to improve airflow and reduce aerodynamic drag. It creates controlled turbulence, which enhances the performance of control surfaces, increases lift, and delays airflow separation. Vortex generators are commonly used on high-performance aircraft to optimize stability, control, and fuel efficiency. Vortex Generator
VPD (Parachute Deployment Speed) VPD is the maximum airspeed at which an emergency parachute system can be safely deployed. Found in some general aviation aircraft with ballistic recovery systems (BRS), exceeding VPD may cause the parachute to fail or rip apart upon deployment. VPD (Parachute Deployment Speed)
VR (Rotation Speed) VR is the speed at which a pilot initiates nose-up rotation during takeoff, transitioning the aircraft from ground roll to climb. It is based on aircraft weight, balance, and environmental factors. If rotation occurs too early or late, performance issues such as tail strikes or runway overruns may occur. VR (Rotation Speed)
VREF (Landing Reference Speed) VREF is the final approach reference speed, ensuring a stable descent and landing. It is calculated based on landing weight, wind conditions, and flap configuration. A proper VREF approach allows for a safe touchdown while maintaining control authority for a possible go-around if necessary. VREF (Landing Reference Speed)
V-Tail Configuration A V-tail configuration replaces the traditional vertical and horizontal stabilizers with two surfaces forming a V-shape. This design reduces drag and weight while improving aircraft efficiency. Common in light aircraft and unmanned aerial vehicles, V-tail configurations require specialized flight controls, as the rudder and elevator functions are combined into control surfaces called ruddervators. V-Tail Configuration
VX (Best Angle-of-Climb Speed) VX provides the steepest climb angle relative to horizontal distance, used for clearing obstacles near the runway. While VX allows for the greatest altitude gain over distance, it sacrifices airspeed. It is essential for short-field takeoffs, where rapid altitude gain is necessary due to terrain or other obstructions. VX (Best Angle-of-Climb Speed)
VY (Best Rate-of-Climb Speed) VY allows for the fastest altitude gain over time, maximizing climb performance while maintaining a safe airspeed. It is the most efficient climb speed used in normal operations and cruise climb. While VX provides the steepest climb, VY is more useful for reaching cruising altitude quickly. VY (Best Rate-of-Climb Speed)